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I. INTRODUCTION

Max Planck (1858-1947) was an early pioneer in the field of quantum physics. Around 1900

Planck developed the concept of energy quantization to explain the spectral distribution of

blackbody radiation1. This idea is fundamental to the quantum theory of modern physics.

Planck received a Nobel Prize for his work in the early development of quantum mechanics in

1918. Interestingly, Planck himself remained skeptical of practical applications for quantum

theory for many years. Planck proposed that atoms absorb and emit radiation in discrete

quantities given by

E = nhf, (1)

where n is an integer known as a quantum number, f is the frequency of vibration of the

molecule, and h is Planck’s constant. The smallest discrete amount of energy radiated or

absorbed by a system results from a change in state whereby the quantum number n of the

system changes by one.

In 1905 Albert Einstein (1879-1955) published a paper2 in which he used Planck’s quan-

tization of energy principle to explain the photoelectric effect. The photoelectric effect

involves the emission of electrons from certain materials when exposed to light and could

not be explained by classical models. Einstein assumed that the electrons absorbed one

quantum of electromagnetic energy at a time and that the energy of this quantum (photon)

is

E = hf =
hc

λ
, (2)

where f is the frequency of the light and λ is its wavelength. An electron would only be

ejected if the photon energy was greater than the energy binding the electron to the metal.

Einstein received the Nobel Prize in Physics for this work in 1921.

Niels Bohr (1885-1962) used Planck’s ideas on the quantization of energy as a starting

point in developing the modern theory for the hydrogen atom. Robert Millikan made the
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first measurement of Planck’s constant in 1912. The best current value for Planck’s constant

is4 h = 6.6260693× 10−34 J s = 4.13566743× 10−15 eV s.

In this experiment, you will use the current-voltage relationship of a set of light emitting

diodes (LEDs) to measure Planck’s constant. An LED is a semiconductor device that

emits electromagnetic radiation at optical and infrared frequencies. The device is a p-n

junction diode made from p-type and n-type semiconductors, usually GaAs, GaP or SiC.

They emit light only when an external applied voltage is used to forward bias the diode

above a minimum threshold value. The gain in electrical potential energy delivered by this

voltage is sufficient to force electrons to flow out of the n-type material, across the junction

barrier, and into the p-type region. This threshold voltage for the onset of current flow

across the junction and the production of light is V0. The emission of light occurs after

FIG. 1: The electrons flow over the barrier at the p-n junction when they are given sufficient

potential energy by the external bias voltage.

electrons enter into the p-region (and holes into the n-region). These electrons are a small

minority surrounded by holes (essentially the anti-particles of the electrons) and they will

quickly find a hole to recombine with. Energetically, the electron relaxes from the excited

state (conduction band) to the ground state (valence band). The diodes are called light-

emitting because the energy given up by the electron as it relaxes is emitted as a photon.

Above the threshold value, the current and light output increases exponentially with the

bias voltage across the diode. The quanta of energy or photon has an energy E = hf . The

relation between the photon energy and the turn-on voltage V0, is

eV0 = Eg = hf =
hc

λ
, (3)

where Eg is the size of the energy gap, V0 is the threshold voltage, f and λ are the frequency

and wavelength of the emitted photons, c is the velocity of light, e is the electronic charge,
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and h is Planck’s constant.

II. EXPERIMENTAL PROCEDURES

The main component of the apparatus is a circuit board containing 6 LEDs, each with a

different emission wavelength. A particular LED can be connected to the circuit shown in

Fig. 2, and the current and voltage are measured as the external voltage from the power

supply is varied. Connect the power supply and ammeter to the + (RED) and – (BLACK)

FIG. 2: The current through the LED is measured by the ammeter and the voltage across the

LED is measured with the voltmeter. Be sure the power supply is off and the voltage knob is set

to zero before you modify the circuit.

terminals on the LED board so that the 100Ω current-limiting resistor is included in the

circuit. Check that the voltmeter measures the voltage directly across the LED only, i.e. not

including the 100Ω resistor. Turn the power supply on and very slowly increases the voltage

until the LED just starts to glow. Continually monitor the current so that you do not exceed

the maximum current. Measure the current as a function of the voltage across the LED,

being particularly careful to obtain sufficient readings around the knee of the curve. Do not

exceed the 20 mA maximum current rating for this LED. Typical data is displayed in Fig. 3.

Repeat these measurements of the I–V curves for each of the other diodes, noting that 5 of

them have a maximum current rating of 20mA and the IR LED has a 100mA rating.

III. DATA ANALYSIS

Plot graphs of current (ordinate) vs voltage (abscissa) for each LED. The experimental

problem here is how to determine V0, the turn-on voltage. The human eye has a wavelength-

3



FIG. 3: A typical current–voltage curve for an LED. Note that once the LED turns on, the current

increases very quickly with increasing voltage. Be especially careful in this region not to exceed

the maximum current.

dependent sensitivity so that a visual determination will not work. And it is a difficult and

error-prone task to measure a small current in the presence of electrical noise.

One method to consider begins with plotting the I–V data on a semi-log graph. Your

data should approximate a straight line, indicative of the exponential nature of the current

voltage relationship. An operational definition of the threshold voltage could be that value

of the bias voltage when the current reaches 0.01mA. Extrapolate your I–V curves to where

they cross 0.01mA current and use that as the working value of V0.

Construct a table with columns for V0, λ, and f . For each LED, use the measured

value of V0 and the value of f to determine a value for Planck’s constant and enter it as

a column in the table. Find the mean value of Planck’s constant and its uncertainty from

your experimental values. Compare to the value given earlier.

A difficulty here is our simplifying assumptions about the barrier height and the threshold

voltage. Our simple model may be off by an additive constant ∆E, i.e. Eq. (3) should be

replace by

eV0 + ∆E = Eg = hf =
hc

λ
. (4)

But if we plot V0 versus f for the set of six LEDs, then the slope of a straight-line fit is h/e,

independent of the additive constant ∆E. Construct such a plot and do a least-squares fit

to determine the slope h/e and the value of ∆E. Compare your value of Planck’s constant
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to those above. (It is a bit easier here to work in units of eV s for Planck’s constant.)

1 M. Planck, Über das Gesetz der Energieverteilung im Normalspektrum, Ann. d. Physik, 4, 553,

(1901).

2 A. Einstein, Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen

Gesichtspunkt, Ann. d. Physik, 17, 132 (1905).

3 R. A. Millikan, A Direct Photoelectric Determination of Planck’s “h”, Phys. Rev. 7, 355 (1916).

4 http://physics.nist.gov/cuu/Constants/introduction.html

5 The equation usually discussed is I = B exp(−Eg/kT + eV/kT ) [see S.M. Sze, The Physics of

Semiconductor Devices, p. 102, (Wiley, New York, 1969)].

6 As pointed out by Morehouse [R. Morehouse, Am. J. Phys. 66, 12 (1998)], the voltmeter measures

the potential change across the junction and any IR loss at the junction. Thus at higher currents,

some roll-off should be expected due to the IR term.
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Table 2. Relationship between color, wavelength and energy of light 
 
Color of light Approximate wavelength [nm] Approximate energy [eV] 
Ultraviolet 400 3.10 
Violet 410 3.00 
Violet-blue 430 2.90 
Blue 480 2.60 
Blue-green 500 2.50 
Green 530 2.30 
Green-yellow 560 2.20 
Yellow 580 2.10 
Orange 610 2.00 
Red 680 1.80 
Red-purple 720 1.70 
 
 

Hold the red light emitting LED close to the fiber, which is attached to a stand 
with a foam cup.  Observe the spectrum and if it varies widely you may need to hold the 
LED more steadily.  Adjust the integration time so that the maximum intensity is roughly 
3000 counts.  Adjust the y-axis and select the spectral region so it displays only the 
significant part of the spectrum, for example, for the red LED the spectral region could be 
550 nm to 750 nm. Use the cursor to find the wavelength of the peak maximum and 
record that value.  If you are satisfied, send the spectrum to the printer. 

Pour liquid nitrogen into the foam cup.  Immerse the red LED in liquid nitrogen 
and hold it for 10 to 20 seconds.  Does the color change?  Remove the LED from liquid 
nitrogen and when it is still cold record the spectrum following the steps above.  If you 
hold the LED in the air for too long, the temperature will increase, and you may have to 
repeat the procedure.  Record the wavelength of the maximum of the band.  Print the 
spectrum in the same spectral range as for the measurements at room temperature.  Let 
the LED warm back to room temperature and record the spectrum, but this time, do not 
print it.  Are spectral changes reversible? 

DIP IN LIQUID NITROGEN ONLY THE HEAD OF THE LED; DO NOT DIP 
THE CIRCUIT AND PLASTIC HOLDER. CAUTION:  Liquid nitrogen is extremely 
cold.  Do not allow it to come to a contact with your skin or cloth. 

Repeat for the remaining LEDs, but do not print the spectra.  Instead, in Table 3 
 

record the wavelengths of the maxima.   The blue light emitting LED does not emit light 
at 77 K.  For some LEDs you will observe band splitting and multiple peaks. 
Interpretation of this effect is not simple and is related to added impurities, other than 
phosphorus.  Manufacturers do it to enhance the light intensity.  For those LEDs the 
temperature induced shift may be discussed in terms of the shift of the “center of the 
band” and not of the band maximum. 




