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KIRCHHOFF’S LAWS 
 
Lab Goals: Learn how to analyze more complicated circuits with more than one 

voltage source and numerous resistors. 
 
Lab Notebooks: Write descriptions of all of your experiments in your lab notebook. 

Answer all of the questions about the lab in your notebook also, 
instead of in the lab writeup. 

 
Apparatus Power supply, 1.5V battery, breadboard, resistors, hookup wires, 

multimeter.  
 
Introduction By now you’re well acquainted with the governing relationship for 

a resistor, I = V / R, known as “Ohm’s Law”. But as we use it in 
today’s lab we’ll need to be careful about sign. When we speak of 
current I, we mean conventional current, the charge flow 
assuming that it is the positive charges free to flow in our 
conductors. If the charges actually free to move are negative, then if a battery were connected, these 
negative charges would move toward the positive side of the battery. If the free charges are positive, 
they would move toward the battery’s negative. But nothing we do in our lab exercise would be 
different either way, and so we adopt the less error-prone route of assuming positive charge flow. 
Therefore, when a battery is connected to a conductor, a current I of positive charges flows from the 
battery’s plus toward its minus. 

  Having settled on conventional current, we now recall that charges lose energy to heat as they 
move through a resistance, and accordingly the potential drops as they move. Therefore, we may 
write Ohm’s Law in a way more useful in circuit analysis. As we move in the direction of the current 
through a resistor, there is a drop in potential governed by: 

 
      V drop in the

direction of I

 Ithrough R R    (1) 

 

 Today’s lab has two goals: To see how multiple resistors behave as a single resistor, and to 
understand how to determine current flow in more complicated circuits that cannot be analyzed by 
treating multiple resistors as one. The only thing we really need to add to equation (1) is a principle 
we’ve already encountered: Charge cannot perpetually build up anywhere in a circuit, so: 

 
     I going into any point in a circuit = I going out (2) 
   
 Obviously the circuit of Figure 1 obeys this principle, for in a simple series circuit, the current must 

be the same everywhere . We’ll soon see how we use the principle in more complex circuits.  
  
 You’ve already dealt with the ideas of series and parallel in 

several places in lab. Still, let’s formalize the ideas with respect to 
finding equivalent resistance. 

 
 Resistors in Series 
 Figure 2 shows two resistors in series, for there is no place for 

current to split; the same current I must flow through one and then 
the other. It flows from top to bottom through the resistors, so 
there is a potential increase from the bottom to the top of the 
bottom resistor, and a similar increase across the top resistor. 
These two must add up to the potential difference established by 
the battery. Combining this with the fact that each resistor is 
independently governed by equation (1) gives 

 

 
Figure 1
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   V = V1 + V2 = I R1 + I R2 = I (R1+R2)  or 
V

I
= R1 + R2 

 
 We see that the battery’s V causes a current I exactly what it would be if connected to a single 

resistor whose resistance is the sum of the two. In general, 
 
    In Series: Reffective  Rii   (3) 

  
 Resistors in Parallel 
 Figure 3 shows two resistors in parallel, for current may split at the 

point labeled a, going through one resistor or through the other, 
before reuniting at point b to return to the battery. In a series 
connection each resistor has the same current. But in parallel it is 
the potential difference that is the same for both, while the two 
currents, according to principle (2), add to give the current I 
flowing from the battery. Again applying equation (1) to each 
resistor, 

 

  I = I1 + I2 = (V1/R1) + (V2/R2) = V 
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 So far as the battery is concerned, its 
potential difference V causes a current I 
exactly what it would be if connected to a 
single resistor whose resistance is the 
reciprocal of the sum of the reciprocals. In 
general: 

 

    In Parallel:
 Reffective 

1

1 Rii
 (4) 

  

 Note that, when resistors are in parallel, the 
effective resistance is always smaller than 
any of the individual resistances. We should 
expect this, for we noted in the first lab that 
resistance in parallel makes for easier current flow. We also noted that the ratio in which the current 
splits follows from knowing that the resistors indeed have the same V and that it equals I times R, 
so that the current ratio is the inverse of the resistance ratio. 

 
 

 A Method Most General 
 If it is just one battery connected to many resistors, usually you can break a circuit down into 

combinations of resistors in parallel and series to find the current flowing from the battery. But if 
there are multiple batteries, this is often impossible. The simplest example, which you will do in this 
lab, is shown in Figure 4. No two resistors are in series, for no two must, as in Figure 2, have the 
same current flowing through them. Rather, current has places where it can split between them. And 
no two are in parallel, for no two necessarily have the same potential difference across them, as in 
Figure 3, where the resistors’ tops are connected by a resistanceless wire, ensuring equal potential, 
and their bottoms are similarly at equal potential. 

  In cases like this, we fall back on a more general, if more tedious, method: adding potential 
differences around loops. Potential is a well-defined thing. Provided some place is chosen as zero 
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potential, the potential is set everywhere else in the universe. If we start somewhere, and keep 
account of how the potential increases and decreases as we move about randomly, then if we 
eventually return to where we started, the increases and decreases had better add to zero, for the 
potential is back where it started. How do we apply this to a circuit? 

 
 1. Choose appropriate symbols and directions for the yet-unknown currents. In Figure 4 

they’ve been chosen arbitrarily. Because current can split at points a and b, we must allow 
for different currents in different parts of the circuit. But points a and b are the only 
“branching points”, so things elsewhere are pretty much in series. For instance, whatever 
current leaves Battery 2 must flow through resistor R2—no more, no less—and it must also 
be what leaves point b headed for Battery 2, for 
nowhere from point b to point a along the 
rightmost part of the circuit are there places where 
current can split. Similarly, the current must be 
the same everywhere from b to a along the 
leftmost part of the circuit. But how do we know 
the current is moving in the directions we’ve 
chosen?  We don’t—but we don’t have to! The 
method always works, simply by choosing 
directions arbitrarily and following through. In the 
end we discover the true directions very easily: If 
the numerical values turn out negative, it means 
the direction is opposite what was arbitrarily 
chosen. Still, though arbitrarily chosen, the 
currents must “add up”. Principle (2) must be 
obeyed. At point a, I1 and I2 enter, and I3 leaves. 
Conversely, at point b, I3 enters and I1 and I2 
leave. At either point, the Principle requires that: 

 
     I1 + I2 = I3 

    (5) 
 
 2. Add up potentials around “loops”, however 

many loops are needed to include at least some 
information about every part of the circuit. Figure 
5 shows a clockwise loop, starting at the negative 
of Battery 1, going through the center part of the 
circuit, then back where it started. Here is the accounting of potential increases and 
decreases: 

 
  Loop 1: 1  I1R1  I3R3  0  (6) 

 
 From the negative to the positive of Battery 1, the potential goes up by 1. (This new 

symbol stands for the battery’s “emf”, meaning electromotive force, the magnitude of the 
potential difference it establishes. Naturally it’s measured in volts.) Moving in the direction 
of I1, the potential drops across resistor R1 by the appropriate current times resistance—this 
is equation (1)! Moving in the direction of I3, the potential similarly drops across R3, and 
then the potential changes no more in returning to the negative of Battery 1, for potential 
never changes along resistanceless wires. Ending where we started, the total change in 
potential must be zero. 

  But not all the circuit has been considered yet—what of R2? One more loop is enough, so 
long as it covers that part of the circuit. Figure 6 shows one, and the accounting is as 
follows: 

 
Figure 5

 
Figure 6
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  Loop 2: 1  I1R1  I2R2 2  0 (7) 

 
 The first two terms are just as before, for this loop starts out the same way, but it goes across 

resistor R2 opposite the current, so it goes toward the higher potential side, thus the plus sign 
in the third term. The fourth and last term is negative because the loop takes us from the high 
side to the low side of this battery. It makes no difference what’s going on elsewhere in the 
circuit or which way currents flow—a battery has a plus side and a minus side, which never 
vary! 

  
 Conclusion And what good is all this? Well, assuming that the causes of current flow, 1 

and 2 , are known, as are R1, R2 and R3, equations (5), (6) and (7) are three equations in 

three unknowns, I1, I2, and I3. We can solve for the effects, i.e., the currents. When solved, 
they yield: 

 
  I1  [1(R2  R3) 2R3] Z ,    I2  [2 (R1  R3) 1R3] Z ,     I3  [1R2  2R1] Z  

       (8a) (8b) (8c)  
 

 where  Z  R1R2 + R1R3 + R2R3 
 
 
 
 
 
 

LAB EXERCISE: KIRCHHOFF’S RULES 
  
Introduction The analysis of the circuit in Figure 4 (the 

same as in Figure 8) is usually referred to 
as “applying Kirchhoff’s Rules”. In short, it 
involves writing expressions accounting for 
the fact that (1) the currents and (2) the 
potential differences must add up. From 
these Rules, the flow of current in even the 
most complex circuits can be predicted, and 
in this activity we verify them in a case 
where the alternative, a simple “series and 
parallel” approach, won’t work. By now, 
you’re expected to be able to wire a circuit 
from a standard circuit diagram and to use 
the multimeter to measure currents and potential 
differences without many reminders. But here’s 
something from the “Simple Circuits” lab you may not 
remember but you’ll certainly need to know. When measuring potential difference, a positive value 
means that the VmA jack is at higher potential than the COM jack; when it reads a negative, 
VmA is at lower potential than COM. And when measuring current, a positive value means that 
current is flowing into the VmA jack (and out the COM jack); a negative means current flows out 
the VmA jack. 

 
  Important Note: This lab writeup often suggests that you measure the current directly using your multimeter. 

Since we now believe Ohm’s law, it is much easier to measure voltage differences directly and 
then use Ohm’s law to compute the currents. 

 

Procedure 1. Wire together the circuit of Figure 8. 1is the power supply, and 2  is the battery. R1=470, 

R2=1000, and R3=2000Check the resistor color codes, and also measure the resistor values 

Figure 7 



5 
 

with the multimeter before you put the resistors into the breadboard. With the multimeter dial set 
at 2000 in the  sector and its leads in VmA and COM jacks, measure R1, R2 and R3. (For R3 

you may have to change to the 20k scale in the  sector.) 

 2. Set the power supply voltage to 15V and measure it with the multimeter. 

 3. You already know the values of the resistances. Now that you also know the batteries’ emfs, what 
theoretically should be the currents (don’t measure them yet!) I1, I2 and I3, including sign? Don’t 
solve equations (5), (6) and (7); merely plug in to their result: equations (8a), (8b), and (8c). Show 
your calculations in your lab notebook.. 

   Theoretical: I1:_________mA I2:_________mA I3:_________mA  

 4. Now measure the currents, but as you do, keep track of sign/direction as follows. The figure 
below is one way of representing a measurement of I1, showing the important things: where the 
circuit is being broken and which multimeter lead is where. Similarly modify this figure as 
necessary to represent all of your current measurements. Then in the space below record the 
values you read, including sign exactly as you read it, 

 

   

 5. Discuss how your measured currents compare with the theoretical values and what the signs 
mean. If you see significant discrepancies, how do you resolve them? [Again it should be helpful 
to your answer to calculate percent differences.] 

 6. Now that you know the currents, what should be (don’t measure them yet!) the magnitudes of the 
potential differences across each of the three resistors and which side should be higher potential? 
Show your calculations. 

   Magnitude of potential difference  Higher potential side (circle one) 
    VR1:____________V   Left  Right 

    VR2:____________V   Left  Right 

    VR3:____________V   Top  Bottom 

 7. Now, as you did in step 4, modify the figure below to show how you measure potential 
differences across the three resistors, then record your values, including the sign that you read 
from the meter. 

Measured:  
I1:_________mA

 I2:_________mA 
 I3:_________mA
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 8. Discuss how your measured potential differences compare with the theoretical values and what 
the signs mean. If you see significant discrepancies, how do you resolve them? 

 9. Now, it’s easy to lose sight of what’s really behind circuit analysis. Let’s make the ideas a bit 
more tangible. You have only potential differences. But suppose we arbitrarily define the 
potential V to be exactly +2.00V at the positive side of Battery 1. As we know, once done, this 
determines the potential everywhere. Using your experimentally measured potential differences, 
fill in the boxes, showing the actual value the potential would be at all the indicated points in the 
circuit. (Note: Does negative V bother you? We could define the gravitational potential energy to 
be zero at the top of Mt. Whitney, couldn’t we?) 

 

   
 10. Within reasonable round-off/significant-figures error, does everything fit? 

LAB EXERCISE: POWER 
Procedure 1. In the previous lab exercise, Battery 1 takes positive charges at low energy at its negative 

terminal and shoots them out at high energy at its positive terminal. The charge per unit time I1 

times the energy difference per charge, 1 both of which you measured in Activity 2A, is an 

energy per unit time, a power. (Power = I  V.) How much power is Battery 1 putting into the 
circuit? Power put into circuit by Battery 1:____________W 

 2. Resistors just turn electrical power into heat, and it should be possible to calculate the power 
dissipated in any of three equivalent ways, 

  Power dissipated: (Ithrough R)(Vacross R) = (Vacross R)2/R = (Ithrough R)2R  
  They’re equivalent because equation (1) can be used to convert any one into any other. Using 

your experimentally measured values of current and potential difference for R1, calculate the 
power dissipated each of these ways. It’s a loss, but just report the absolute value. 

   Power dissipated in R1:  __________W  __________W __________W 
 3. Do they indeed agree within reasonable round-off/significant-figures error? 
 4. Using your favorite method, calculate the power dissipated in resistor R2 and in resistor R3. 
   Power dissipated in R2:  __________W  Power dissipated in R3:  __________W  

5. The circuit is neither gaining nor losing energy—it’s a “steady state”. Do the four powers you’ve 
calculated add up, and if not, can you account for the discrepancy quantitatively? 

Measured:
 VR1:_________V

 VR2:_________V

 VR3:_________V 


